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Abstract. Chandrasekhar’s phenomenological theory of brownian motion is transcribed to 
the quantum regime. The statistics used is that of Boltzmann but the free particle was 
treated, in addition, with Fermi-Dirac statistics followed by some discussion relating to the 
measurements of low temperatures. Difficulties arising from the dissipative processes 
involved are by-passed with the aid of a new methodology enabling one to obtain a propa- 
gator in configuration space, which embraces single-particle dissipative forces. This sort 
of propagator is in turn used for the construction of a type of a nonequilibrium density 
matrix for the quantum brownian particle. Exact nonequilibrium density matrices for the 
free and the harmonically bound brownian particles under the influence of external time 
dependent forces are obtained. Finally, a quantum Fokker-Planck type equation for the 
general brownian particle is derived. The analysis proceeds via functional integration. 

1. Introduction 

It was Einstein’s idea (1956) that the phenomenon of brownian motion, exhibited by 
particles of colloidal size in a liquid environment, results from collisions by the molecules 
of the surrounding medium, due to the thermal agitation of the latter. Langevin (1908) 
was able to dress the idea, mathematically, with his equations for the brownian particle. 
Further, the theory of brownian motion with classical dynamics was developed by 
Uhlenbeck and Ornstein (1930) and Chandrasekhar (1943). 

As is well known, brownian motion is not restricted to particles of colloidal size, 
but may be equally well exhibited by particles of atomic or even electronic dimensions. 
In such cases, particularly in the latter, one can no longer employ classical dynamics, 
but has to have recourse to the quantum regime. Furthermore, in the case of electrons 
at low temperature, it would be necessary to couple Fermi-Dirac statistics with quantum 
dynamics. 

The classical theory of brownian motion, apart from explaining a fundamental 
phenomenon, also deals with mathematically tractable problems of nonequilibrium 
statistical physics. The theory is based on the Langevin model which simulates the 
many-particle medium interaction experienced by the’brownian particle by two single- 
particle forces; a dissipative, and a random force. The model displays a great attraction 
ih that it reduces an essentially many-particle problem to a single-particle one. Now, 
due to the fact that dissipative forces are not in general hamiltonian-derivable, it would 
seem that a quantum-mechanical construction of a density matrix for the brownian 
particle, based on the Langevin model, would inevitably entail difficulties. A circum- 
stantial discussion of the difficulties involved has been given by Kubo (1969). However, 
the simplicity of the model is such that it would be worth while attempting to develop 
a quantum-mechanical counterpart. The transcription to the quantum regime requires 
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knowledge of the random force autocorrelation, which, unlike the classical state of 
affairs, varies from case to case. The evaluation of this autocorrelation is easily accom- 
plished within the framework of the Heisenberg picture by comparing the mean energy 
of the brownian particle in a state of thermodynamic equilibrium, obtained by equilib- 
rium statistical mechanics, with that obtained from an appropriate nonequilibrium 
method. 

In 9 2 we evaluate the various autocorrelation functions for the random force in the 
cases of free and harmonically bound particles using Boltzmann statistics. In addition 
the free electron case is treated with Fermi-Dirac statistics, resulting in an expression 
markedly different from the one corresponding to Boltzmann statistics. 

In 0 3 we work out a type of nonequilibrium density matrix for the brownian quantum 
oscillator within the framework of the Schrodinger picture. In this connection we 
present a methodology capable of handling single-particle dissipative forces. However, 
the approach is not free of defects, and these are pointed out in the text. Finally, 5 4 
deals with an equation of motion for the density matrix of a general brownian particle. 

2. The random force autocorrelations 

In the case of classical dynamics the Langevin equation of motion, for the brownian 
particle in a potential field U ( x )  and under the influence of a time prescribed force 
F(t), is: 

d2X a m dx 
dt ax to dt mT+-U(x)-F(t) = -- -+f(t). 

The forces on the right-hand side of (2.1) simulate the many-body medium interaction 
experienced by the brownian particle. As is well known, the particle constantly loses 
energy through the dissipative force - (m/to)x, while through the forcef(t), taken to be 
a random force, its energy is restored on average. to  is the particle relaxation time. 

Chandrasekhar (1943) assumed the distribution of the random force within a short 
time interval to be gaussian, and the random forces at two distinct times to be un- 
correlated. Now, the high collision rate (lo2' collisions/s) enables the use of a functional 
probability for the random force, 

embodying the above assumptions. 
The distribution given by (2.2) implies the averages : 

(f(4) = 0, (fj(7l)fk(72)) = C6j$(T, -72). (2.3) 

The coefficient C in the random force autocorrelation given in (2.3) and appearing 
in the distribution (2.2) in the classical case is the same irrespective of the potential 
U(x),  and is given by : 

m 

t0 
C = 2-uT (2.4) 

where Tis the medium temperature and IC Boltzmann's constant. However, in the case 
of quantum dynamics the uncertainty principle correlates the kinetic and potential 
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energies, and the situation in which C is independent ofthe potential energy is no longer 
valid. 

For the evaluation of the random force autocorrelation we shall rely on two different 
procedures for obtaining the average energy in a state of thermodynamic equilibrium; 
an equilibrium and a nonequilibrium procedure. Our system will consist of brownian 
particles considered independent of each other. The state of thermodynamic equilibrium 
is brought about by environmental and very slight interparticle interactions, which 
are simulated by the frictional and the random force. Although these interactions are 
responsible for bringing about the state of equilibrium they do  not finally appear in the 
equilibrium distribution of the system. Actually the distribution is fully determined 
by the system hamiltonian H(p,  x) alone. Since the medium interactions are mainly 
responsible for the eventual establishment of equilibrium, it should be possible to 
obtain the average energy per particle of the system of interest determined by its own 
forces and the environmental interactions. The necessary averages are to be taken 
over distributions pertaining to the system plus the environment. 

More specifically, let X(t)  and P(t)  be the position and momentum operators of a 
brownian particle, at time t ,  obtained from its (operator) equation of motion, which 
involves the medium interactions. In the case of the Langevin model they will be 
functions of the initial values of the position and momentum operators and functionals 
of the random force. 

In short they will look like : 

where x’ and p‘ (= - iha/ax’) are the initial operator conditions of the particle. 
Introducing the expressions (2.5) into the hamiltonian for the brownian particle, 

we may interpret the result as the ‘instantaneous energy operator’ofa particular brownian 
particle. Now, in order to obtain the mean energy per particle we have to average both 
against the density matrix of the initial conditions, pin, and the distribution of the 
random force. The result will be the double average : 

<H(P( t ) ,  X(t))>> 

= J [J ( W P ( r ) ,  X(t))Pin(x’lx)}x=,, dx) Wb[f(T)l n d m .  

(W, 4) = J IHb? X)Pq(XIX’)L = x dx. 

(2.6) 
O S T < t  

In the absence of external forces, equilibrium statistical mechanics tells us that the 
average energy per particle is obtained via the equilibrium density matrix pes as follows : 

(2.7) 

When the initial conditions in (2.6) relate to the state of equilibrium, described by the 
density matrix pq of(2.7), then the average energies obtained through the nonequilibrium 
procedure described by (2.6) and the equilibrium way of (2.7) should coincide. Equating 
(2.6)(withph = pq)to(2.7) weareled toanequationinvolvingthecoefficient Cappearing 
in the random force autocorrelation (2.3), from which it can be evaluated. 

The equation is : 

< W W ,  X(t)))> = (H@, x)> ; Pin = Pes. (2.8) 
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We now ask the question, what happens when external forces are switched on our 
system of interest? Are they likely to engender changes in the random force auto- 
correlation? Certainly, if they are capable of creating, eventually, a new state of equilib- 
rium affairs, they are bound to modify the random force autocorrelation accordingly. 
However, in the case of a time prescribed external force, in the cases of free and har- 
monically bound particles, such a force superimposes itself upon the fluctuating force, 
and under these circumstances its characteristics remain unaltered. 

In what follows we shall exemplify the above procedure in the case of the free and 
harmonically bound brownian particles. Furthermore, we shall build up a body of 
expressions necessary for the construction of the corresponding density matrices of the 
next section. 

For the free particle the Langevin operator equation is : 

dP 1 
dt to 
_ -  - --p+f(t). 

The solution which satisfies the initial condition 

h a  P(0) = p‘ = T - ax’ 
is : 

P(t) = exp -- p’+ dT exp - f ( 7 ) .  ( t:1 sd Lr1 (2.10) 

The hamiltonian is H = p2/2m. Therefore (2.6) becomes: 

where for the derivation of (2.1 1) we have made use of the random force autocorrelation, 
given in (2.3) 

Since the system of our brownian particles remains in the same macroscopic 
equilibrium state, the average initial energy W2/2m), and the mean energy, (p2/2m), 
at any time t should be the same. This energy is obtained via the density matrix per- 
taining to  the statistics of the system. 

Making use of (2.8) we find C, in the case of free particles, to be given by : 

c = 212 i ( l p 2 )  
t o 3  2m 

In the case of Boltzmann statistics the equilibrium density matrix is 

1 
while the corresponding distribution for Fermi-Dirac statistics is : 

(2.12) 

(2.13~) 

(2.13b) 

In (2.13b) N is the number of brownian particles in the system, ck ( =h2k2/2m) is the free 
particle energy associated with the wavevector k, and is the chemical potential of the 
system. 
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Evaluating now the mean equilibrium energy per particle in the two regimes of 
statistics, we obtain, utilizing (2.12), the values of the random force autocorrelation 
coefficient, CB and C,, for Boltzmann and Fermi-Dirac statistics as: 

(in agreement with Chandrasekhar's result) and 

(2.14~) 

(2.14b) 

where Q, is the Fermi energy given by 

and U is a dimensionless variable (U = h2k2/2mlcT) introduced in (2.13b) to  facilitate 
the derivation of (2.14b). 

The expression for C associated with Boltzmann statistics, in spite of the quantum 
dynamics used for its derivation, does not involve Planck's constant h and therefore 
coincides with the corresponding classical result. This is so, since with Boltzmann 
statistics, in the limit of large volume, the free-particle classical and quantal statistical 
treatments converge to  each other. However, with Fermi-Dirac statistics the quantum 
effects persist irrespective of the system size. As is well known, for large temperatures 
the quantum statistical result tends to the classical one. At low temperatures the 
difference becomes more pronounced. Thus, the low temperature asymptotic expression 
for C,, obtained from the corresponding mean energy of free fermions, through (2.12), 
is given by : 

(2 .14~)  

From this we see that at absolute zero C ,  = 4mc,/5t0, while its corresponding value 
with Boltzmann statistics is CB = 0. 

As a simple application let us now evaluate the voltage autocorrelation 
((V(t)V(t + t))) of a resistor due to the brownian motion of its conduction electrons. 
The voltage operator for such a resistor of length I ,  resistance R ,  with N conduction 
electrons, and which is taken along the x direction, will be : 

e p?)(t) 
1 j = l  m 

V(t) = - R  - (2.15~) 

where Pv)( t )  is the x component of the momentum operator of the j th conduction 
electron at time t .  Utilizing (2.15~) we write the thermal voltage autocorrelation as : 

(2.15 b) 

where the double averaging refers to the averages taken against the density matrix of 
the initial conditions and the distribution of the random force. 

Essentially the evaluation of (2.1%) requires a two-body density matrix for the 
initial conditions, but here we are dealing with nearly independent particles and the 
momentum correlations relating to two particles will be approximately zero. We are 
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then left with the evaluation of a single-particle momentum autocorrelation. The result 
is : 

= R-expi CF -3 
2m 

(2 .15~)  

where for the derivation of (2.1%) we have combined (2.10), (2.3) and (2.13b). Further- 
more we have made use of the formula, R = l2m/e2Nt0, expressing the resistance in 
terms of the electron relaxation time. CF is given by (2.14b). 

Fourier transforming the voltage fluctuation formula (2.1%) with respect to T and 
specializing to the case of near absolute zero temperatures, using (2.14c), we have : 

J 211 - m  
((y(t)V(t + 7)) exp(ioz) dz 

(2.15d) 

The result (2.15d), taking account of the proper electron statistics, may indicate a 
more appropriate scale for the calibration of the low temperature quantum flux thermo- 
meters (Kamper 1967, Kamper and Zimmerman 1971, Giffard et a1 1972) as compared 
with the linear scale in use. 

Let us now work out the case when an externally applied time dependent force 
F(t) acts on the free brownian particle. We shall be interested in obtaining the averages 
for the momentum, position, and energy, which will be used in the derivations of the 
next section. 

In this case the operator equation is: 

1 
t 0  

(2.16) p = - -p+F( t )+ f ( t j .  

The solution, for the momentum and position; satisfying the initial conditions, 

X(0) = x' 
h a  P(0) = p' = - 7, 
i ax 

is given by : 

P(t)  = exp -- p'+ dz exp - (F( t )+ f ( z ) )  i :,i c izJ ( 2 . 1 7 ~ )  

The above expressions for the momentum and position involve as random elements 
the thermal forcef(t)and the initial conditions (x',p'). The average value of any quantity 
which is a function of P(t)  or X(t )  is to be taken against the thermal force distribution 
(2.2), and the density matrix pq which, depending on the statistics, will be ( 2 . 1 3 ~ )  in 
the case of Boltzmann statistics or (2.13b) in the case of Fermi-Dirac statistics. 
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Proceeding in this way we obtain the average values of the momentum and position, 
the momentum autocorrelation and the kinetic energy : 

(2.18a) 

Boltzmann statistics 

du Fermi-Dirac statistics 
exp(u - Bc) + 1 

(2.18b) 

(2.18~)  

(2.18d) 

The double averages emphasize the two averaging procedures relating to the thermal 
force on one hand and the initial conditions on the other. Single averages with the 
suffix ‘eq’ indicate that the averaging is performed against the equilibrium density 
matrix. 

The first two averages (2.18a, b) express the response of the system of brownian 
particles, in terms of momentum and displacement, to the external force F(t) .  The 
momentum autocorrelation, given in (2.18c), shows the decay pattern of this quantity. 

The final relation gives the average energy of our particle at time t in terms of the 
mean equilibrium energy and an additional energy picked up from the external field. 

Let us now turn our attention to the brownian motion of the quantum oscillator. 
The Langevin equation of motion, when a time prescribed external force is operating, 
is given by: 

p = m i .  
1 

to 
p = - - p - m R 2 x + F ( t ) + f ( t ) ;  (2.19) 

The equilibrium density matrix, appropriate for the situation prevailing before the 
introduction of the external force, is: 

{(x’ + x ’ ~ )  cosh(Bhn) - 2x . x’) 
mR 

xexp - ( 2h sinh(bhn) (2.20) 

This is in conformity with Boltzmann statistics which we shall assume for the remainder 
of this section. 

We shall require the solution €or the momentum and position of the operator 
equation (2.19) satisfying the initial conditions : 
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We have : 

(F( r )+ f ( r ) )  (2 .21~)  

(2.21b) 

where R' = (R2-(1/2t0)2}'12. The above expressions hold equally well in the case 
where the restoring force prevails over the medium resistance (R > 1/24,) and vice versa, 
but in the latter case we have to take account of the imaginary sign of the square root 
giving 0'. 

The hamiltonian characterizing the state of equilibrium for the quantum oscillator is : 

1 m  
2m 2 

H(p, X) = -p2 +-Q2x2 (2.22) 

We wish now to evaluate the random force autocorrelation coefficient for the 
quantum oscillator. For this purpose we shall make use of the expressions for the 
momentum P(t )  and the position X(t) given by (2.21a,b) with zero external force. 
Inserting these expressions into the hamiltonian (2.22) and making use of formula (2.8) 
relating the nonequilibrium and equilibrium procedures for evaluating the thermal 
energy, we have : 

= $&2 coth(ifihi2). (2.23) 

The autocorrelation coefficient C appears on the left-hand side of (2.23). Its value thus 
obtained is given by : 

C = -ha m cothi $) 
t 0  

(2.24) 

It should be noted here, that as a result of the quantum dynamics the value of the 
random force autocorrelation coefficient depends greatly on the potential energy in 
question, whereas in the case of classical dynamics C has the same value irrespective 
of the potential. The difference is due to the uncertainty principle interrelating the 
kinetic and potential energies. Incidentally, (2.24) could be obtained from kinetic 
energy considerations but even so the involvement of the potential energy would have 
been inescapable. In the case of free particles (Boltzmann statistics) both classical and 
quantal treatments yield the same value for C, a result of the correspondence principle. 

Let us now work with the external force F(t)  switched on the brownian particles. 
The mean values of the momentum and displacement, obtained by averaging (2.21a, b) 
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over the distribution of the thermal force (2.2) and that of the initial conditions (2.20), 
are given by : 

1 
((P(t)>> = f d r  (cos U(t - T) -- 

0 2toU 

t 1  
((X(t)>> = Jo drma sin Q‘(t - r) exp (2.256) 

Finally it is a matter of routine exercise to  establish the following relation for the 
brownian oscillator : 

A more telling way of putting this result for the nonequilibrium mean energy given 
by (2.26) is : 

U W t ) ,  = (Hb, X I > ,  + H ( u v ) > ,  <X(t)>). 

The above relation states that the equilibrium mean energy is a sort of zero point for 
the average nonequilibrium energy, and that the additional mean energy, acquired by 
the system, upon switching on external forces is simply obtained from the system 
hamiltonian ( H  = p2/2m + mQ2x2/2)  by replacing the momentum and position 
operators by their average instantaneous values. However, the general validity of such 
a statement, even in the regime of brownian motion, should be considered as one of a 
good approximation. 

In thenext section weshall proceed to thederivation ofan appropriatenonequilibrium 
density matrix. 

3. Nonequilibrium density matrix for the quantum oscillator 

Distribution functions for the brownian motion of the quantum oscillator have been 
devised by a number of authors (Montroll and Shuler 1957, Schwinger 1961, Phillipson 
1971, Agarwal 1971 and others). A somewhat troublesome situation likely to arise in 
such a derivation stems from the difficulty of including dissipative terms in the hamil- 
tonian of the brownian particle. The various authors circumvented this difficulty by 
building in the density matrices or their equations of motion, at some stage or another, 
a dissipative mechanism. Thus, Montroll and Shuler in their equation, governing the 
rate of change of the fraction of oscillators in the nth state of excitation, model the 
energy losses, through radiation and collisions, by a de-excitation transition probability. 
Phillipson, essentially, replaces each oscillator eigenfunction by a modulated plane 
wave carrying momentum equal to the mean momentum of the classical brownian 
particle and having an amplitude obtained from the corresponding eigenfunction 
referred to a moving system following the average motion. Agarwal employs Wiper’s 
phase-space distribution functions and in this way enables himself to obtain a quantum 
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version of the Fokker-Planck equation for the oscillator. Schwinger uses his quantum 
action in which he embodies random forces and in addition manipulates the necessary 
dissipative process. In our approach we transcribe the classical theory of brownian 
motion to the quantum regime working solely within the configuration space. Inevitably 
we are also faced with the problem of how to include a type of Stokes resistance in a 
single-particle lagrangian. This is done with the aid of a multiplier analogous to the 
Euler integrating factor (Havas 1957). This procedure, in a strict quantum-mechanical 
sense, presents certain disadvantages (Marcuse 1970). However, this should not deter 
us from manipulating with such a formalism, for this can be made to yield correct 
information. 

We begin with the classical Langevin equation (2.1) which in the case of a harmonic- 
ally bound charged 
field &(t) is : 

brownian particle under the influence of a time prescribed electric 

m 
t 0  

- -i - mRZx + e&@) +f( t ) .  (3.1) 

In the previous section, basically we employed the Heisenberg picture and thus 
enabled ourselves to quantize the equation of motion (3.1). However, in order to develop 
a density matrix (in the Schrodinger picture) we require the propagator associated with 
the equation of motion (3.1). This in turn presupposes a lagrangian capable of generating 
the classical equation of motion. At this point our troubles begin to emerge, for there is 
no genuine lagrangian function capable of yielding the dissipative force - (m/to)i 
appearing on the right-hand side of (3.1). Nevertheless, the function: 

Lo = exp - (idz - +mR2xz + e&(t) . x +f(t) . x) 
(t:) 

while not a proper lagrangian, will serve as such, for when fed into the Euler-Lagrange 
equations it engenders the equation of motion (3.1). 

In what follows we shall use (3.2) as our lagrangian. From it we shall construct 
the associated hamiltonian, action, and operators in accordance with the usual rules. 
Our generalized momentum will be : 

The hamiltonian will be : 

. 

(3.3) 

(3.4) 

Needless to say the hamiltonian So, constructed in the above manner, can no longer 
be interpreted as energy. The difficulty lies with the terms that rise exponentially with 
time, but this is precisely the price we have to pay for replacing many-particle interactions 
with just a couple of terms and so eventually dealing with a single-particle lagrangian. 

Since our lagrangian (3.2) is quadratic in i, x we can obtain the associated propagator 
exactly from the classical action, using the Van Vleck-Pauli formula (Jones and Papa- 
dopoulos 1971). To obtain the classical path X(t)  from the equation of motion (3.1), 
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which at zero time starts from x’ and reaches x at time t ,  we utilize expression (2.21b) 
with F(t) = e&(t) and interpret the operators p’, x’ as scalars. We then evaluate p‘ so 
that the condition X(t)  = x is satisfied. Next we feed the expression for the classical 
path, thus derived, into the action formula, and so we obtain the following result for 
the action along the classical path : 

W x ‘ O  ; [f(7)l) = 

+A J: dr { x’ sin R’(t - z) + x exp 
sin 0 t 

x J: dz s,’ dz‘ sin R’(t - z) sin UT’ exp - 

x (e&) +f(z) )  ( d ( 7 ‘ )  +f(r’)). (3.5) 

For the sake of emphasis we have indicated, on the left-hand side of (3 .9 ,  that the action 
is a functional of the random force. 

With the aid of Van Vleck-Pauli formula, our propagator readily takes the form : 

Clearly the propagator, through the action, becomes a functional of the random force. 
It is a quadratic exponential in the random force. Although, sometimes, we average 
propagators involving random elements we shall not be doing so, for such a procedure 
would only yield averaged wavefunctions, a thing which is not quite what we are aiming 
at in the quantum mechanics of nonequilibrium processes. What we are actually 
interested in, in this case, is the mean value of operators, and therefore the quantity to 
be averaged is a sort of probability amplitude rather than the wavefunction itself. 
In terms of propagators we require the following averaged product : 

<K(xtlxiO; V1)K*(xftlx20 ; V l ) > f n l  

1 
= / KK* exp ( -  J: &z) d7 (3.7) 

taken against the functional distribution of the random force. This propagates quantities 
of the form Y(xl,0)Y*(x2,0); Y being the wavefunction of the system at zero time. 
Therefore, the quantity (KK*)fn, defined in (3.7) is the propagator for the density 
matrix. Feynman employs quantities like KK* in the form of a double path integral, 
from which he obtains an influence functional(see Feynman and Vernon 1963). Edwards 
(1962), also, in dealing with the averaging of quantities of interest, established that the 
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desired averages can be obtained from the appropriate averaged propagator (see also 
Brittin and Chappell 1969). 

Fortunately, by having to form KK*, for our averaging purposes, we arrive at a 
linear exponential functional which is much easier to average than the quadratic func- 
tional we would have had to deal with if we had to average the propagator K alone. 
The functional average ( KK*)fn, is to be considered as an ensemble-averaged density 
matrix propagator ; the ensemble being represented by the functional distribution of 
the thermal force (2.2). Inserting in formula (3.7) the expression for the propagator K 
associated with the randomly driven damped oscillator, given in (3.6), and utilizing 
for the random force autocorrelation C the appropriate value for the oscillator, given 
by (2.24), we obtain the following expression for the ensemble average density matrix 
propagator : 

i 
-2(x,.x-x,.x')exp - +--- 

(2:,)3 h s i n a t  

x 1; dr { (xl - x2) sin R'(t - z) + (x - x') exp - sin CYr exp - eb( r )  (4 I (4 
C 

2h2 sin2R't 
- 

x J: dz h x l  - x2) sin Rf(t - r )  + (x - x') exp - sin R'z exp - (3.8) izl,) r itl 
where for the derivation of (3.8) we have made use of the functional integration formula 
appearing in the appendix of Papadopoulos (1967) in connection with functional 
integrals in brownian motion. 

The ensemble-average density matrix propagator (3.8) will be used to propagate 
the density matrix (2.20), pertaining to a system of (charged) harmonic oscillators in 
a state of thermodynamic equilibrium, which from zero time onwards are disturbed 
by an externally applied electric field 8(t). The density matrix at time t is given by : 

The first average on the right-hand side of (3.9) refers to the ensemble average, effected 
via functional integration, while the other refers to  that of the initial conditions, taken 
against their equilibrium distribution. Therefore, we may interpret the nonequilibrium 
density matrix, given by (3.9), as a further average of the nonequilibrium density matrix 
propagator (KK*),, taken in relation to the ensemble of the initial conditions. Needless 
to stress that this mode of description, essentially, has to do with the Langevin model. 
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The evaluation of (3.9) with the aid of (2.20), the equilibrium distribution for the 
oscillator, involves only gaussian integrations. The result is : 

coth(&?hn)(x - x ’ ) ~  

where <x>) = <X(t)> and <P> = <fit))> are the doubly-averaged values of the dis- 
placement and momentum of the oscillator, given by (2.25a, b), with the external force 
F(t)  replaced by e&@). 

Looking at the distribution (3.10) we observe, even in the absence of the external 
force, the rather extraordinary indefinite evolution in time. The situation should not be 
disturbing for our quantities of interest are obtained by averaging operators modified 
in such a way so that they suppress in full the undesired features bound to come from 
the distribution if the operators were used without due adjustment. This is done in a 
manner, perfectly systematic, according to rules dictated by generalized dynamics. 
The procedure will become quite clear in the evaluations that follow. 

We begin with the kinematic momentum m i ( t )  the momentum denoted byp  in the 
previous section. According to (3.3), the kinematic momentum is given, in terms of the 
generalized momentum by : 

mi( t )  = exp -- p. ( :J (3.11) 

The associated operator identity is obtained, in the usual manner, by replacing the 
generalized operator p by the operator (h/i)tJ/tJx, and thus we have : 

mi,, = exp -- --. ( t:)! :x 
(3.11a) 

The averaging of this operator, and in fact any operator A ,  is effected, as per usual, 
according to the formula : 

( A )  = [ {Ap(xIx’; t)},,=, dx. (3.12) 

The position operator xop is just x. 

oscillator, we obtain for the average value of the kinematic momentum the result : 
Utilizing (3.12) with A = miop, given by (3.11a) and p taken from (3.10) for the 

(mi.*,> = <w> ( 3 . 1 3 ~ )  

where ( ( f i t ) )>  is the expression given in (2.25a), which is precisely the result obtained, 
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earlier on, in the framework of the Heisenberg picture. This does not involve h, and it is, 
therefore, the same result obtained by use of classical dynamics. 

For the average position we have : 

(x,,> = (1) = GW>> (3.13 b) 

where ((X(t)>> is given by (2.2%) of the previous section. 

averaging the kinetic energy operator : 
The mean kinetic energy of a forced harmonically bound particle is obtained by 

(3.14~) 

which leads to the result : 

(+mi:,) = ihn coth(~jhn)+~m(i , , )2  (3.14b) 

where the first term on the right-hand side of (3.14b) is the mean kinetic energy under 
equilibrium conditions. 

The mean potential energy of the quantum oscillator, under the influence of a time 
dependent force, is given by : 

(3.15) 

Again it is worthwhile to comment on the pattern according to which the mean non- 
equilibrium quantity decomposes into its equilibrium part and the part obtained by 
replacing the momentum and position operators with their mean values. The mean 
value of the total energy is easily obtained by adding (3.14b) and (3.15). 

We would now like to derive the free brownian particle density matrix as a limiting 
case of the oscillator density matrix. As a matter of fact we did work out such a density 
matrix, directly, by propagating the equilibrium free-particle distribution, given by 
(2.13a), but to our amazement the propagated distribution was unable to  yield any 
average value for the displacement other than zero, even when the particles were acted 
upon by an external force. The case for the velocity was alright. Such a deficiency 
should be attributed to the fact that the eigenfunctions in the equilibrium matrix (2.13a) 
satisfy periodic boundary conditions (and not the conditions associated with bounding 
walls). Now, periodic boundary conditions imply that any point in space can be taken 
as origin and in this way the displacement averages are lost. One way for remedying 
the situation is by employing a more accurate density matrix, relating to the conditions 
of the bounding walls. Such a density matrix can be obtained from Pauli (1952), but 
here we shall adopt an alternative procedure, that of replacing the confining effect of a 
vessel by a three-dimensional oscillator well of an appropriate strength. Such a device 
was originally employed by Darwin (1930) in connection with what, in those days, 
used to be a thorny problem, the magnetization of free electrons confined in a finite 
region. 

For the transition from the oscillator to the free particle an appropriate parameter 
is required. It is obtained by comparing (2.20), the oscillator equilibrium distribution, 
with the corresponding free-particle distribution (2.13a) when the oscillator frequency 
R approaches zero. With R in the vicinity ofzero we can replace the hyperbolic functions 
in the oscillator equilibrium distribution by their expansions up to first order in R and 
in this way we enable ourselves to recover the equilibrium free-particle density matrix by 

($mR2x2 -e&(c). x) = $hi2 coth($bh12)++mR2(x)2 - e B ( t ) .  (x). 
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taking 

(3.16) 

This is precisely the value of RZ used in Derrick’s work (1969) in connection with 
statistical mechanics of interacting particles contained by a potential well instead of a 
box. In the derivation of (3.16) we had in mind that the volume Vis very large, and so 
R is sufficiently small. Let us now use the 52 from (3.16) in the nonequilibrium density 
matrix (3.10) for the harmonic oscillator. We may then argue that because of the small- 
ness of R we can expand the hyperbolic functions up to  first order in R (if any) and take 
R in the dynamic parts of the distribution tending to zero. But, precisely this procedure 
will lead us to the deficient density matrix, which could be obtained by propagating the 
free-particle distribution (2 .13~) .  To avoid this situation we should take account of the 
quantum effects of the oscillator well confinement, which in the end of the averaging 
processes will be dropped out. To this end we require the expansions to be taken a 
step further. The dimensionless parameter naturally arising is 

(3.17) 

which is a combination of the microscopic quantities h, K and the macroscopic quantities 
T, V. It is a measure of the quantum effects due to vessel confinement. For a volume of 
1 cm3 and ordinary temperature its magnitude is of the order of 

Even with such an inconceivably small value for q it is necessary that it should be 
kept in the expression arising from the term 

mR 
2h sin(fihn) - [cosh(fihn)((x-(~))~+(x‘- (x))’} - ~ ( x - ( x ) )  - (x’-(x))] (3.18) 

in the exponential argument of the distribution (3.10) if we wish to extract the correct 
displacement averages. (3.18) is associated with the potential energy and, as such, 
incorporates the confinement effects. We retain q to first order in this term, and proceed 
elsewhere to the limit of R tending to zero apart from the normalization factor for which 
the asymptotic value 1/V was established earlier on. The above expression may be 
interpreted as the exponential argument of the distribution for harmonically bound 
particles in a state of equilibrium with reference to  a moving frame following the average 
motion. The term preceding this relates to the kinetic energy, while the last term is the 
phase of a plane wave which, apart from the exponentially increasing factor, carries 
momentum equal to the average particle momentum. 

With the above replacements and limiting procedures on the oscillator distribution 
(3.10) we obtain the following nonequilibrium density matrix for the brownian particle 
acted upon by a time dependent external force : 

~ ( x I x ‘ ;  t )  = -exp -(x-x) 1 -exp - ; [2& ’ zi (::)} 
(3.19) 
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It can be easily verified that the expression for q given by (3.17) is such that (3.19) is 
correctly normalized. 

The averages (x) and (mi,,) appearing in (3.19) are given by the expressions for 
((X(t)>> and ( ( f i t ) )  for the free particle given by (2.18a, b) taken with 4 2 )  = e&(z). 

The above distribution yields the velocity, displacement and rest averages correctly. 
As pointed out, earlier on, the parameter q which may appear in the averaged expressions 
is to be put equal to zero. Re-evaluation of averages, relating to the forced brownian 
particles by means of the above density matrix, leads to the expressions obtained in the 
previous section. 

By way of observation the following variant of the expression (3.19) for the free 
particle density matrix can yield the quantities of interest by averaging the usual 
(unmodified) operators : 

p’free(~lx‘; t )  = -exp -- [ ( ~ + ~ ~ ) { ( x - ( x ) ) ~ + ( x ’ - ( x ) ) ~ )  
V ( 2h:B 

(3.20) 

Next, we shall obtain an equation of motion for the nonequilibrium density matrix 
for the general brownian particle. 

4. Equation of motion for the density matrix propagator 

Edwards (1965), in his paper on the density of states and the Boltzmann equation for 
electrons in disordered systems, works out a quantum equation suitable for brownian 
motion. He begins with the (deterministic) functional probability of finding, at time t ,  
aparticular wavefunctionand itscomplexconjugate. Such aprobabilityis the propagator 
of a Liouville equation, pertaining to the circumstances, which he obtains from the 
rate of change of his functional probability. Further, from the Liouville equation by 
suitable averaging he is led to a Fokker-Planck equation. His formalism is quite general, 
revealing a number of interesting features, and particularly making visible in a natural 
fashion the dependence of the collision time on the particle velocity. 

However, our aim below is to provide a more restricted equation for the non- 
equilibrium distribution for the brownian particle within the framework of the Langevin 
model. We begin with the density matrix propagator constructed according to (3.7) 
and associated with the Langevin equation (2.1). This satisfies a Smoluchowski- 
Kolmogorov-Chapman type equation, that is, 

The procedure for the derivation of (4.1) is analogous to the one used for obtaining the 
corresponding classical case devised in Papadopoulos (1968). It should be noted here 
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that no restriction is imposed on the magnitude of the time interval At. However, for 
the purpose of deriving a differential equation for our density matrix propagator At 
will be taken small. 

To facilitate the integrations we put : 

y1 = x-5, y2 = XI--. 

Then the short-time (deterministic) propagator, from t to t + At, takes the form : 
K(x t  + A t l ~  - g t  ; v]) 

where by U ( x ,  t )  we have denoted U ( x )  - F. x. 

with dashed coordinates. 
A similar expression can be written for the complex conjugate form of this propagator 

The ensemble average of the corresponding transition amplitude is : 

(4.3) 

The transition amplitude Y(6 ; 5‘) is the analogue of the short-time transition probability 
of the classical case. The last exponential in (4.3) is the outcome of the averaging against 
the thermal force distribution and embodies the statistical content of the transition 
amplitude. 

Let us now proceed in the usual way of expanding the left-hand side of the integral 
equation (4.1) in powers of At and the right-hand side, except for the transition amplitude, 
in powers of 6, 5’. We keep terms up to first order in At, for higher-order terms will, in 
the end, vanish as At goes to zero. 

Thus, from (4.1) we arrive at : 

a 
( K K * ) + A t - j - ( K K * ) +  . . . 

+ 1 -6’2- a 2  + 55’- a 2  + . . . ) ( X K * )  
2 axf2  axax’ 

where ( K K * )  is a shortened version of the density matrix propagator 

<K(xtlx,O; LfI)K*(x’tlx20; LfI)>f*, 

(4.4) 
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which does not involve 5 or 5'. It remains now to integrate the right-hand side of (4.4) 
over 5 and 5'. Of the resulting expressions we need only retain terms up to first order 
in At.  To this effect it is sufficient to employ the following approximate form for the 
transition amplitude : 

where on the right-hand side of (4.5) we have omitted terms involving 5 or 5' which are 
already of order At, since upon integration the order of At would further increase. 
The following results will be used : 

s de dg'S(5 ; 5') = 1 - (U(x ,  t )  - U(x', t))At + O{(At) ' }  

Inserting the results (4.6) into (4.5) we can cancel out the (KK*) on the left-hand side 
of (4.5) with the (KK*) created on the right-hand side. Further, dividing by At on 
both sides and passing to the limit as At goes to zero we are left with the desired equation 
for our nonequilibrium density matrix: 

i 
(4.7) 

a 
ih-(KK*) = &'(KK*)-W(KK*) --exp 

at 2Ch 

where Y? in (4.7) stands for the hamiltonian operator, corresponding to the lagrangian 
of our problem, that is, 

t h2 a 2  H = -exp -- --+exp - ~ ( x , t ) .  ( t , )2m ax2 ( J .  
The dashed Af in (4.7) is just the operator (4.8) with x replaced by x', and is acting on 
the dashed x's of the density matrix (KK*). 

The last term in the equation (4.7) for the nonequilibrium density matrix represents 
the effect of the collisions. With the exception of this term it is formally the usual density 
matrix equation. The equation as a whole can be considered as a quantum analogue 
of the Fokker-Planck equation for brownian motion in the single-particle configuration 
space. 
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